This book addresses the application of methods used in statistical physics to complex systems—from simple phenomenological analogies to more complex aspects, such as correlations, fluctuation-dissipation theorem, the concept of free energy, renormalization group approach and scaling. Statistical physics contains a well-developed formalism that describes phase transitions. It is useful to appl…
Statistical physics describes a wide variety of phenomena and systems when interaction forces may have different natures: mechanical, electromagnetic, strong nuclear, etc. The commonality that unites all these systems is that their belonging to statistical physics requires the presence of thermal fluctuations. In this sense these phenomena necessarily include the thermodynamic aspect. Meanw…