As the ultimate information processing device, the brain naturally lends itself to being studied with information theory. The application of information theory to neuroscience has spurred the development of principled theories of brain function, and has led to advances in the study of consciousness, as well as to the development of analytical techniques to crack the neural code—that is, to un…
The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted techni…
There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are…
Since the end of the 19th century when the prominent Norwegian mathematician Sophus Lie created the theory of Lie algebras and Lie groups and developed the method of their applications for solving differential equations, his theory and method have continuously been the research focus of many well-known mathematicians and physicists. This book is devoted to recent development in Lie theory and i…
This volume offers concepts, methods and case studies of innovative and evolving technologies in the area of watershed assessment. Topics discussed include: (1) Development and applications of geospatial, satellite imagery and remote sensing technologies for land monitoring; (2) Development and applications of satellite imagery for monitoring inland water quality; (3) Development and applicatio…
Hybrid quantum circuits interfacing rare earth spin ensembles with microwave resonators are a promising approach for application as coherent quantum memory and frequency converter. In this thesis, hybrid circuits based on Er and Nd ions doped into Y?SiO? and YAlO? crystals are investigated by optical and on-chip microwave spectroscopy. Coherent strong coupling between the microwave resonator an…
Hysteretic loss optimisations through numerical simulation and subsequent experimental confirmation in transport current and background field measurements: ferromagnetic shielding and topological geometry optimisation is used to reduce energy dissipation in HTS coated conductor geometries. Single tapes and coil geometries are investigated. A 3D model capable of taking into account contact resis…
While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable ex…
This volume is comprised of articles providing new results on variational and hemivariational inequalities with applications to Contact Mechanics unavailable from other sources. The book will be of particular interest to graduate students and young researchers in applied and pure mathematics, civil, aeronautical and mechanical engineering, and can be used as supplementary reading material for a…
This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative expe…