OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Geometrical Foundations of Continuum Mechanics
Bookmark Share

Text

Geometrical Foundations of Continuum Mechanics

STEINMANN, Paul - Personal Name;

This book illustrates the deep roots of the geometrically nonlinear kinematics of

generalized continuum mechanics in differential geometry. Besides applications to first-

order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating

for generalized models of continuum mechanics such as second-order (gradient-type)

elasticity and elasto-plasticity.



After a motivation that arises from considering geometrically linear first- and second-

order crystal plasticity in Part I several concepts from differential geometry, relevant

for what follows, such as connection, parallel transport, torsion, curvature, and metric

for holonomic and anholonomic coordinate transformations are reiterated in Part II.

Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics

are considered. There various concepts of differential geometry, in particular aspects

related to compatibility, are generically applied to the kinematics of first- and second-

order geometrically nonlinear continuum mechanics. Together with the discussion on

the integrability conditions for the distortions and double-distortions, the concepts

of dislocation, disclination and point-defect density tensors are introduced. For

concreteness, after touching on nonlinear fir

st- and second-order elasticity, a detailed
discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity

is given. The discussion naturally culminates in a comprehensive set of different types

of dislocation, disclination and point-defect density tensors. It is argued, that these

can potentially be used to model densities of geometrically necessary defects and the

accompanying hardening in crystalline materials. Eventually Part IV summarizes the

above findings on integrability whereby distinction is made between the straightforward

conditions for the distortion and the double-distortion being integrable and the more

involved conditions for the strain (metric) and the double-strain (connection) being

integrable.



The book addresses readers with an interest in continuum modelling of solids from

engineering and the sciences alike, whereby a sound knowledge of tensor calculus and


Availability

No copy data

Detail Information
Series Title
-
Call Number
531 STE g
Publisher
: ., 2015
Collation
-
Language
English
ISBN/ISSN
978-3-662-46459-5
Classification
531
Content Type
text
Media Type
computer
Carrier Type
online resource
Edition
-
Subject(s)
Solid Mechanics,
Specific Detail Info
-
Statement of Responsibility
Paul Steinmann
Other Information
Cataloger
Khusnun
Source
-
Validator
-
Other version/related

No other version available

File Attachment
  • Geometrical Foundations of Continuum Mechanics
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?