OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
Bookmark Share

Text

Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models

PASQUALE, Ferrante - Personal Name; MATTEO, Di Maso - Personal Name; MONICA, Ferraroni - Personal Name; SERENA, Delbue - Personal Name; FEDERICO, Ambrog - Personal Name;

In survival analysis, time-varying covariates are endogenous when their measurements are directly related to the event status and incomplete information occur at random points during the follow-up. Consequently, the time-dependent Cox model leads to biased estimates. Joint models (JM) allow to correctly estimate these associations combining a survival and longitudinal sub-models by means of a shared parameter (i.e., random effects of the longitudinal sub-model are inserted in the survival one). This study aims at showing the use of JM to evaluate the association between a set of inflammatory biomarkers and Covid-19 mortality. During Covid-19 pandemic, physicians at Istituto Clinico di Città Studi in Milan collected biomarkers (endogenous time-varying covariates) to understand what might be used as prognostic factors for mortality. Furthermore, in the first epidemic outbreak, physicians did not have standard clinical protocols for management of Covid-19 disease and measurements of biomarkers were highly incomplete especially at the baseline. Between February and March 2020, a total of 403 COVID-19 patients were admitted. Baseline characteristics included sex and age, whereas biomarkers measurements, during hospital stay, included log-ferritin, log-lymphocytes, log-neutrophil granulocytes, log-C-reactive protein, glucose and LDH. A Bayesian approach using Markov chain Monte Carlo algorithm were used for fitting JM. Independent and non-informative priors for the fixed effects (age and sex) and for shared parameters were used. Hazard ratios (HR) from a (biased) time-dependent Cox and joint models for log-ferritin levels were 2.10 (1.67-2.64) and 1.73 (1.38-2.20), respectively. In multivariable JM, doubling of biomarker levels resulted in a significantly increase of mortality risk for log-neutrophil granulocytes, HR=1.78 (1.16-2.69); for log-C-reactive protein, HR=1.44 (1.13-1.83); and for LDH, HR=1.28 (1.09-1.49). Increasing of 100 mg/dl of glucose resulted in a HR=2.44 (1.28-4.26). Age, however, showed the strongest effect with mortality risk starting to rise from 60 years.


Availability

No copy data

Detail Information
Series Title
-
Call Number
-
Publisher
Florence : Firenze University Press, Genova University Press., 2021
Collation
-
Language
English
ISBN/ISSN
9788855184618
Classification
NONE
Content Type
text
Media Type
computer
Carrier Type
online resource
Edition
-
Subject(s)
Endogenous time-varying covariates
Time-dependent Cox model
Joint models
Inflammatory biomarkers
Covid-19 mortality
Specific Detail Info
-
Statement of Responsibility
Ferrante, Pasquale Di Maso, Matteo Ferraroni, Monica Delbue, Serena Ambrogi, Federico
Other Information
Cataloger
agus
Source
-
Validator
-
Digital Object Identifier (DOI)
-
Journal Volume
-
Journal Issue
-
Subtitle
-
Parallel Title
-
Other version/related

No other version available

File Attachment
  • Chapter Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?