OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of The Convergence Problem for Dissipative Autonomous Systems
Bookmark Share

Text

The Convergence Problem for Dissipative Autonomous Systems

Alain Haraux - Personal Name;

The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.


Availability

No copy data

Detail Information
Series Title
SpringerBriefs in Mathematics
Call Number
-
Publisher
: Springer Cham., 2015
Collation
XII, 142, 1 illustrations in colour
Language
English
ISBN/ISSN
978-3-319-23407-6
Classification
NONE
Content Type
-
Media Type
computer
Carrier Type
-
Edition
1
Subject(s)
Dynamical Systems
Ergodic Theory,
Specific Detail Info
-
Statement of Responsibility
Alain Haraux, Mohamed Ali Jendoubi
Other Information
Cataloger
Suwardi
Source
https://link.springer.com/book/10.1007/978-3-319-23407-6
Validator
-
Digital Object Identifier (DOI)
-
Journal Volume
-
Journal Issue
-
Subtitle
-
Parallel Title
-
Other version/related

No other version available

File Attachment
  • The Convergence Problem for Dissipative Autonomous Systems
    The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?