OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Counting Surfaces CRM Aisenstadt Chair lectures
Bookmark Share

Text

Counting Surfaces CRM Aisenstadt Chair lectures

Bertrand Eynard - Personal Name;

The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging from statistical physics, geometry, particle physics, telecommunications, biology ... etc. This problem has been studied by many communities of researchers, mostly combinatorists, probabilists, and physicists. Since 1978, physicists have invented a method called "matrix models" to address that problem, and many results have been obtained. Besides, another important problem in mathematics and physics (in particular string theory), is to count Riemann surfaces. Riemann surfaces of a given topology are parametrized by a finite number of real parameters (called moduli), and the moduli space is a finite dimensional compact manifold or orbifold of complicated topology. The number of Riemann surfaces is the volume of that moduli space. More generally, an important problem in algebraic geometry is to characterize the moduli spaces, by computing not only their volumes, but also other characteristic numbers called intersection numbers. Witten's conjecture (which was first proved by Kontsevich), was the assertion that Riemann surfaces can be obtained as limits of polygonal surfaces (maps), made of a very large number of very small polygons. In other words, the number of maps in a certain limit, should give the intersection numbers of moduli spaces. In this book, we show how that limit takes place. The goal of this book is to explain the "matrix model" method, to show the main results obtained with it, and to compare it with methods used in combinatorics (bijective proofs, Tutte's equations), or algebraic geometry (Mirzakhani's recursions). The book intends to be self-contained and accessible to graduate students, and provides comprehensive proofs, several examples, and gives the general formula for the enumeration of maps on surfaces of any topology. In the end, the link with more general topics such as algebraic geometry, string theory, is discussed, and in particular a proof of the Witten-Kontsevich conjecture is provided


Availability

No copy data

Detail Information
Series Title
-
Call Number
516.35
Publisher
Switzerland : Springer., 2016
Collation
xvii, 414 pages
Language
English
ISBN/ISSN
9783764387976
Classification
516.35
Content Type
-
Media Type
-
Carrier Type
online resource
Edition
-
Subject(s)
Algebraic Geometry
Specific Detail Info
-
Statement of Responsibility
-
Other Information
Cataloger
Kurnadi
Source
-
Validator
-
Digital Object Identifier (DOI)
-
Journal Volume
-
Journal Issue
-
Subtitle
-
Parallel Title
-
Other version/related

No other version available

File Attachment
  • Counting Surfaces CRM Aisenstadt Chair lectures
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?