OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Conduction in Carbon Nanotube Networks Large-Scale Theoretical Simulations
Bookmark Share

Text

Conduction in Carbon Nanotube Networks Large-Scale Theoretical Simulations

Robert A. Bell - Personal Name;

This thesis exploits the ability of the linear-scaling quantum mechanical code ONETEP to analyze systems containing many thousands of atoms. By implementing an electron transport capability to the code, it also investigates a range of phenomena associated with electrical conduction by nanotubes and, in particular, the process of transport electrons between tubes. Extensive work has been done on the conductivity of single carbon nanotubes. However, any realistic wire made of nanotubes will consist of a large number of tubes of finite length. The conductance of the resulting wire is expected to be limited by the process of transferring electrons from one tube to another. These quantum mechanical calculations on very large systems have revealed a number of incorrect claims made previously in the literature. Conduction processes that have never before been studied at this level of theory are also investigated


Availability

No copy data

Detail Information
Series Title
Springer Theses
Call Number
537.66
Publisher
Cham : Springer., 2015
Collation
-
Language
English
ISBN/ISSN
9783319199658
Classification
537.66
Content Type
-
Media Type
-
Carrier Type
online resource
Edition
1
Subject(s)
Electron Transport
Specific Detail Info
-
Statement of Responsibility
-
Other Information
Cataloger
Kurnadi
Source
-
Validator
-
Digital Object Identifier (DOI)
-
Journal Volume
-
Journal Issue
-
Subtitle
-
Parallel Title
-
Other version/related

No other version available

File Attachment
  • Conduction in Carbon Nanotube Networks
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?