OPEN EDUCATIONAL RESOURCES

UPA PERPUSTAKAAN UNEJ | NPP. 3509212D1000001

  • Home
  • Admin
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Bookmark Share

Text

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

Möller, Manfred - Personal Name; Pivovarchik, Vyacheslav - Personal Name;

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail.

Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.


Availability

No copy data

Detail Information
Series Title
-
Call Number
-
Publisher
Birkhäuser : Birkhäuser Cham., 2015
Collation
-
Language
English
ISBN/ISSN
978-3-319-17070-1
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Operator Theory
Specific Detail Info
-
Statement of Responsibility
Manfred Möller
Other Information
Cataloger
Firli
Source
https://link.springer.com/book/10.1007/978-3-319-17070-1
Validator
-
Digital Object Identifier (DOI)
-
Journal Volume
-
Journal Issue
-
Subtitle
-
Parallel Title
-
Other version/related

No other version available

File Attachment
  • Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Comments

You must be logged in to post a comment

OPEN EDUCATIONAL RESOURCES

Search

start it by typing one or more keywords for title, author or subject


Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?