Inverse problems occur in a wide range of scientific applications, such as in the fields of signal processing, medical imaging, or geophysics. This work aims to present to the field practitioners, in an accessible and concise way, several established and newer cutting-edge computational methods used in the field of inverse problems—and when and how these techniques should be employed.
Computational Spectrum of Agent Model Simulation
Applications of Soft Computing in Engineering Problems
Towards Conformal Interstitial Light Therapies: Modelling Parameters, Dose Definitions and Computational Implementation
Bioprocess optimization is important in order to make the bioproduction process more efficient and economic. The conventional optimization methods are costly and less efficient. On the other hand, modeling and computer simulation can reveal the mechanisms behind the phenomenon to some extent, to assist the deep analysis and efficient optimization of bioprocesses. In this chapter, modeling and c…
Computational Fluid Dynamics Simulations: an Approach to Evaluate Cardiovascular Dysfunction
Statistical thinking is a way of understanding a complex world by describing it in relatively simple terms that nonetheless capture essential aspects of its structure, and that also provide us some idea of how uncertain we are about our knowledge. The foundations of statistical thinking come primarily from mathematics and statistics, but also from computer science, psychology, and other fields …