In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author informs and…
Mathematical Analysis (often called Advanced Calculus) is generally found by students to be one of their hardest courses in Mathematics. This text uses the so-called sequential approach to continuity, differentiability and integration to make it easier to understand the subject.Topics that are generally glossed over in the standard Calculus courses are given careful study here. For example, wha…
This book examines the kinds of transitions that have been studied in mathematics education research. It defines transition as a process of change, and describes learning in an educational context as a transition process. The book focuses on research in the area of mathematics education, and starts out with a literature review, describing the epistemological, cognitive, institutional and socioc…
This is a short, readable introduction to basic linear algebra, as usually encountered in a first course. The development of the subject is integrated with a large number of worked examples that illustrate the ideas and methods. The format of the book, with text and relevant examples on facing pages means that the reader can follow the text uninterrupted. The student should be able to work thro…
This volume comprises selected extended papers written by prominent researchers participating in the International MultiConference of Engineers and Computer Scientists 2015, Hong Kong, 18-20 March 2015. The conference served as a platform for discussion of frontier topics in theoretical and applied engineering and computer science, and subjects covered include communications systems, control th…
Set theory is the mathematics of infinity and part of the core curriculum for mathematics majors. This book blends theory and connections with other parts of mathematics so that readers can understand the place of set theory within the wider context. Beginning with the theoretical fundamentals, the author proceeds to illustrate applications to topology, analysis and combinatorics, as well as to…
Cooperative game theory deals with situations where objectives of participants of the game are partially cooperative and partially conflicting. It is in the interest of participants to cooperate in the sense of making binding agreements to achieve the maximum possible benefit. When it comes to distribution of benefit/payoffs, participants have conflicting interests. Such situations are usually …
This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications…
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavel…
How can the drag coefficient of a car be reduced? What factors govern the variation in the shape of the Earth's magnetosphere? What is the basis of weather prediction? These are examples of problems that can only be tackled with a sound knowledge of the principles and methods of fluid dynamics. This important discipline has applications which range from the study of the large-scale properties o…