This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory …
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects…
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are re…
This book focuses on the theory of linear operators on non-Archimedean Banach spaces. The topics treated in this book range from a basic introduction to non-Archimedean valued fields, free non-Archimedean Banach spaces, bounded and unbounded linear operators in the non-Archimedean setting, to the spectral theory for some classes of linear operators. The theory of Fredholm operators is emphasi…
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the l…
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert …
This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS.…
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metri…
This book provides a systematic overview of the theory of Taylor coefficients of functions in some classical spaces of analytic functions and especially of the coefficient multipliers between spaces of Hardy type. Offering a comprehensive reference guide to the subject, it is the first of its kind in this area. After several introductory chapters covering the basic material, a large variety of …
With the unifying theme of abstract evolutionary equations, both linear and nonlinear, in a complex environment, the book presents a multidisciplinary blend of topics, spanning the fields of theoretical and applied functional analysis, partial differential equations, probability theory and numerical analysis applied to various models coming from theoretical physics, biology, engineering and com…