Provides innovative techniques for solving complex nonlinear partial differential equations, previously only available to scientists involved in classified government funded projects. · Goes beyond the traditional Pi (Buckingham) Theorem method to apply dimensional analysis to gas dynamics and thermal hydraulics problems where both laminar and turbulent fluids come into play · Includes specif…
This volume collects selected contributions from the “Fourth Tetrahedron Workshop on Grid Generation for Numerical Computations”, which was held in Verbania, Italy in July 2013. The previous editions of this Workshop were hosted by the Weierstrass Institute in Berlin (2005), by INRIA Rocquencourt in Paris (2007), and by Swansea University (2010). This book covers different, though related,…
Numerical methods are designed to approximate one thing or another. Sometimes roots, sometimes derivatives or definite integrals, or curves, or solutions of differential equations. As numerical methods produce only approximations to these things, it is important to have some idea how accurate they are. Sometimes accuracy comes down to careful algebraic analysis—sometimes careful analysis of t…
This book collects the refereed proceedings of the First International Conference onon Algorithms and Discrete Applied Mathematics, CALDAM 2015, held in Kanpur, India, in February 2015. The volume contains 26 full revised papers from 58 submissions along with 2 invited talks presented at the conference. The workshop covered a diverse range of topics on algorithms and discrete mathematics, inclu…
This book constitutes the refereed proceedings of the 14th Algorithms and Data Structures Symposium, WADS 2015, held in Victoria, BC, Canada, August 2015. The 54 revised full papers presented in this volume were carefully reviewed and selected from 148 submissions. The Algorithms and Data Structures Symposium - WADS (formerly Workshop on Algorithms And Data Structures), which alternates with …
The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material.
A first course in mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces.
This award-winning text carefully leads the student through the basic topics of Real Analysis. Topics include metric spaces, open and closed sets, convergent sequences, function limits and continuity, compact sets, sequences and series of functions, power series, differentiation and integration, Taylor's theorem, total variation, rectifiable arcs, and sufficient conditions of integrability. Wel…
The typical introductory real analysis text starts with an analysis of the real number system and uses this to develop the definition of a limit, which is then used as a foundation for the definitions encountered thereafter. While this is certainly a reasonable approach from a logical point of view, it is not how the subject evolved, nor is it necessarily the best way to introduce students to t…
The lecture notes contain topics of real analysis usually covered in a 10-week course: the completeness axiom, sequences and convergence, continuity, and differentiation. The lecture notes also contain many well-selected exercises of various levels. Although these topics are written in a more abstract way compared with those available in some textbooks, teachers can choose to simplify them depe…