Cooperative game theory deals with situations where objectives of participants of the game are partially cooperative and partially conflicting. It is in the interest of participants to cooperate in the sense of making binding agreements to achieve the maximum possible benefit. When it comes to distribution of benefit/payoffs, participants have conflicting interests. Such situations are usually …
This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications…
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavel…
How can the drag coefficient of a car be reduced? What factors govern the variation in the shape of the Earth's magnetosphere? What is the basis of weather prediction? These are examples of problems that can only be tackled with a sound knowledge of the principles and methods of fluid dynamics. This important discipline has applications which range from the study of the large-scale properties o…
The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering…
A concise account of various classic theories of fluids and solids, this book is for courses in continuum mechanics for graduate students and advanced undergraduates. Thoroughly class-tested in courses at Stanford University and the University of Warwick, it is suitable for both applied mathematicians and engineers. The only prerequisites are an introductory undergraduate knowledge of basic lin…
Fluid mechanics is a branch of classical physics that has a rich tradition in applied mathematics and numerical methods. It is at work virtually everywhere, from nature to technology. This broad and fundamental coverage of computational fluid dynamics (CFD) begins with a presentation of basic numerical methods and flows into a rigorous introduction to the subject. A heavy emphasis is placed on …
A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using th…
This textbook, available in two volumes, has been developed from a course taught at Harvard over the last decade. The course covers principally the theory and physical applications of linear algebra and of the calculus of several variables, particularly the exterior calculus. The authors adopt the 'spiral method' of teaching, covering the same topic several times at increasing levels of sophist…
This self-contained introduction to algebraic topology is suitable for a number of topology courses. It consists of about one quarter 'general topology' (without its usual pathologies) and three quarters 'algebraic topology' (centred around the fundamental group, a readily grasped topic which gives a good idea of what algebraic topology is). The book has emerged from courses given at the Univer…