Based on a series of lectures given at Sheffield during 1971–72, this text is designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject. This book presents a number of important topics and develops the necessary tools to handle them on an ad hoc basis. The final chapter contains some previously unpublished material and will p…
Mathematical Analysis (often called Advanced Calculus) is generally found by students to be one of their hardest courses in Mathematics. This text uses the so-called sequential approach to continuity, differentiability and integration to make it easier to understand the subject.Topics that are generally glossed over in the standard Calculus courses are given careful study here. For example, wha…
This is a short, readable introduction to basic linear algebra, as usually encountered in a first course. The development of the subject is integrated with a large number of worked examples that illustrate the ideas and methods. The format of the book, with text and relevant examples on facing pages means that the reader can follow the text uninterrupted. The student should be able to work thro…
Set theory is the mathematics of infinity and part of the core curriculum for mathematics majors. This book blends theory and connections with other parts of mathematics so that readers can understand the place of set theory within the wider context. Beginning with the theoretical fundamentals, the author proceeds to illustrate applications to topology, analysis and combinatorics, as well as to…
Cooperative game theory deals with situations where objectives of participants of the game are partially cooperative and partially conflicting. It is in the interest of participants to cooperate in the sense of making binding agreements to achieve the maximum possible benefit. When it comes to distribution of benefit/payoffs, participants have conflicting interests. Such situations are usually …
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavel…
The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering…
A concise account of various classic theories of fluids and solids, this book is for courses in continuum mechanics for graduate students and advanced undergraduates. Thoroughly class-tested in courses at Stanford University and the University of Warwick, it is suitable for both applied mathematicians and engineers. The only prerequisites are an introductory undergraduate knowledge of basic lin…
Fluid mechanics is a branch of classical physics that has a rich tradition in applied mathematics and numerical methods. It is at work virtually everywhere, from nature to technology. This broad and fundamental coverage of computational fluid dynamics (CFD) begins with a presentation of basic numerical methods and flows into a rigorous introduction to the subject. A heavy emphasis is placed on …
This textbook, available in two volumes, has been developed from a course taught at Harvard over the last decade. The course covers principally the theory and physical applications of linear algebra and of the calculus of several variables, particularly the exterior calculus. The authors adopt the 'spiral method' of teaching, covering the same topic several times at increasing levels of sophist…