Based on a series of lectures given at Sheffield during 1971–72, this text is designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject. This book presents a number of important topics and develops the necessary tools to handle them on an ad hoc basis. The final chapter contains some previously unpublished material and will p…
The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging from statistical physics, geometry, particle physics, telecommunications, biology ... etc. This problem has been studied by many communities of researchers, mos…
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author informs and…
This is a short, readable introduction to basic linear algebra, as usually encountered in a first course. The development of the subject is integrated with a large number of worked examples that illustrate the ideas and methods. The format of the book, with text and relevant examples on facing pages means that the reader can follow the text uninterrupted. The student should be able to work thro…
A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using th…
A First Course in Combinatorial Optimization is a text for a one-semester introductory graduate-level course for students of operations research, mathematics, and computer science. It is a self-contained treatment of the subject, requiring only some mathematical maturity. Topics include: linear and integer programming, polytopes, matroids and matroid optimization, shortest paths, and network fl…
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, p…
This is a self-contained exposition by one of the leading experts in lattice theory, George Grätzer, presenting the major results of the last 70 years on congruence lattices of finite lattices, featuring the author's signature Proof-by-Picture method. Key features: * Insightful discussion of techniques to construct "nice" finite lattices with given congruence lattices and "nice" congruen…
The theory of Schur–Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur–Weyl theory. To begin, various algebraic structures are discussed, including double Ringel–Hall algebras of cyclic quivers…
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, …