Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is an extremely active field in physics and mathematical physics, with a very broad range of implications, both for f…
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random f…
The contributions in this proceedings volume offer a new perspective on the mathematical ties between France and Italy, and reveal how mathematical developments in these two countries affected one another. The focus is above all on the Peninsula’s influence on French mathematicians, counterbalancing the historically predominant perception that French mathematics was a model for Italian mathem…
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main result…
The mathematics education community continues to contribute research-based ideas for developing and improving problem posing as an inquiry-based instructional strategy for enhancing students’ learning. A large number of studies have been conducted which have covered many research topics and methodological aspects of teaching and learning mathematics through problem posing. The Authors' ground…
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, resea…
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal…
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with no…
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to wri…
To understand electrical theory, it is important to have a grasp of trigonometry. Whether we are talking about single phase or polyphase power, trigonometry is a key concept. This textbook, divided into three sections, provides easy-to-understand and enjoyable lessons on trigonometry, vectors and AC generation for those training and working as electricians.