In this book, experts from academia and industry present the latest advances in scientific theory relating to applied electromagnetics and examine current and emerging applications particularly within the fields of electronics, communications, and computer technology. The book is based on presentations delivered at APPEIC 2014, the 1st Applied Electromagnetic International Conference, held in B…
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear …
Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, disc…
This book deals with the theoretical and computational simulation of monoperiodic nanostructures for different classes of inorganic substances. These simulations are related to their synthesis and experimental studies. A theoretical formalism is developed to describe 1D nanostructures with symmetric shapes and morphologies. Three types of models are considered for this aim: (i) nanotubes (rolle…
This course-tested text is an ideal starting point for engineers and physicists entering the field of particle accelerators. The fundamentals are comprehensively introduced, derivations of essential results are provided and a consistent notation style used throughout the book allows readers to quickly familiarize themselves with the field, providing a solid theoretical basis for further studies…
This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties…
This book constitutes the refereed proceedings of the 12th International Colloquium on Theoretical Aspects of Computing, ICTAC 2015, held in Cali, Colombia, in October 2015. The 25 revised full papers presented together with 7 invited talks, 3 tool papers, and 2 short papers were carefully reviewed and selected from 93 submissions. The papers cover various topics such as algebra and category…
This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simul…
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. T…
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phen…