A First Course in Linear Algebra is an introductory textbook aimed at college-level sophomores and juniors. Typically students will have taken calculus, but it is not a prerequisite. The book begins with systems of linear equations, then covers matrix algebra, before taking up finite-dimensional vector spaces in full generality. The final chapter covers matrix representations of linear transfor…
This book focuses on the discrete Fourier transform (D.F.T.), discrete convolution and, particularly, the fast algorithms to calculate them. These topics have been at the center of digital signal processing since its beginning, and new results in hardware, theory and applications continue to keep them important and exciting. This book uses an index map, a polynomial decomposition, an operator f…
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis and topology usually taught in advanced undergraduate or first-year graduate courses.
Elementary Differential Equations With Boundary Value Problems is written for students in science, engineering and mathematics who have completed calculus through partial differentiation. If your syllabus includes Chapter 10 (Linear Systems of Differential Equations), your students should have some preparation in linear algebra. In writing this book I have been guided by the these principles: …
Elementary Algebra 2e is designed to meet scope and sequence requirements for a one-semester elementary algebra course. The book’s organization makes it easy to adapt to a variety of course syllabi. The text expands on the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to…
This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. …
In the second half of the 1990s Christian Mauduit and András Sárközy [86] introduced a new quantitative theory of pseudorandomness of binary sequences. Since then numerous papers have been written on this subject and the original theory has been generalized in several directions. Here I give a survey of some of the most important results involving the new quantitative pseudorandom measures o…
It is essential to lay a solid foundation in mathematics if a student is to be competitive in today’s global market. The importance of algebra, in particular, cannot be overstated, as it is the basis of all mathematical modeling used in applications found in all disciplines. Traditionally, the study of algebra is separated into a two parts, elementary algebra and intermediate algebra. This te…
Elementary Algebra is designed to meet the scope and sequence requirements of a one-semester elementary algebra course. The book’s organization makes it easy to adapt to a variety of course syllabi. The text expands on the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to…
Elementary Algebra is a work text that covers the traditional topics studied in a modern elementary algebra course. Use of this book will help the student develop the insight and intuition necessary to master algebraic techniques and manipulative skills. Elementary Algebra is a work text that covers the traditional topics studied in a modern elementary algebra course. It is intended for student…