This handbook is designed for experimental scientists, particularly those in the life sciences. It is for the non-specialist, and although it assumes only a little knowledge of statistics and mathematics, those with a deeper understanding will also find it useful. The book is directed at the scientist who wishes to solve his numerical and statistical problems on a programmable calculator, mini-…
This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailed ness. These resu…
The book brings together experts working in public health and multi-disciplinary areas to present recent issues in statistical methodological development and their applications. This timely book will impact model development and data analyses of public health research across a wide spectrum of analysis. Data and software used in the studies are available for the reader to replicate the models a…
First-passage properties underlie a wide range of stochastic processes, such as diffusion-limited growth, neuron firing and the triggering of stock options. This book provides a unified presentation of first-passage processes, which highlights its interrelations with electrostatics and the resulting powerful consequences. The author begins with a presentation of fundamental theory including the…
This short book presents a framework for assessing the reliability and availability of visual quality control systems, placing particular emphasis on wavelet-based analysis. It presents experimental results pertaining to the sensitivity of visual quality control to noise, as an example of dependencies. The influencing parameters are analyzed and included in the reliability model. These paramete…
This book provides an up-to-date review of the general principles of and techniques for confirmatory adaptive designs. Confirmatory adaptive designs are a generalization of group sequential designs. With these designs, interim analyses are performed in order to stop the trial prematurely under control of the Type I error rate. In adaptive designs, it is also permissible to perform a data-driven…
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In o…
This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book…
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equat…
This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is foll…