This brief offers a concise presentation of granular fluids from the point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized gra…
This thesis examines various aspects of excess excitation energy dissipation via dynamic changes in molecular structure, vibrational modes and solvation. The computational work is carefully described and the results are compared to experimental data obtained using femtosecond spectroscopy and x-ray scattering. The level of agreement between theory and experiment is impressive and provides both …
Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences. Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent form…
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of th…
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the applica…
This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-depen…
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics…
This brief goes back to basics and describes the Quantitative structure-activity/property relationships (QSARs/QSPRs) that represent predictive models derived from the application of statistical tools correlating biological activity (including therapeutic and toxic) and properties of chemicals (drugs/toxicants/environmental pollutants) with descriptors representative of molecular structure and/…
This book constitutes the refereed proceedings of the 22nd International Symposium on String Processing and Information Retrieval, SPIRE 2015, held in London, UK, in September 2015. The 28 full and 6 short papers included in this volume were carefully reviewed and selected from 90 submissions. The papers cover research in all aspects of string processing, information retrieval, computational bi…
This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geome…