Quasiconvex analysis has important applications in several optimization problems in science, economics and in finance, where convexity may be lost due to absence of global risk aversion, as for example in Prospect Theory.
Adams’inequality [2] in its original form is nothing but the Trudinger-Moser inequality for Sobolev spaces involving higher order derivatives. In this Thesis we present Adams-type inequalities for unbounded domains in Rn and some applications to existence and multiplicity results for elliptic and biharmonic problems involving nonlinearities with exponential growth.
Mathematics Education; Learning; Teaching
Mathematics Education; Learning; Statistics
STEM careers; girls; preteen; YA; mathlete; fashionista; math; middle school
Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Di erent basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to …
This book explains how mathematical tools can be used to solve problems in signal processing. Assuming an advanced undergraduate- or graduate-level understanding of mathematics, this second edition contains new chapters on convolution and the vector DFT, plane-wave propagation, and the BLUE and Kalman filters. It expands the material on Fourier analysis to three new chapters to provide addition…
This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes presen…
This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for grad…