This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focus…
Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying…
This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform…
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on…
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are re…
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithm…
This is the first comprehensive introduction to the theory of word-representable graphs, a generalization of several classical classes of graphs, and a new topic in discrete mathematics. After extensive introductory chapters that explain the context and consolidate the state of the art in this field, including a chapter on hereditary classes of graphs, the authors suggest a variety of proble…
This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have exam…
Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in analysis, algebraic geometry, number theory and topology is emphasized through many theorems. Al…
Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable Separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together …