This work establishes linear-scaling density-functional theory (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable of simulating entire enzymes at the ab initio quantum-mechanical level of accuracy. DFT has trans…
Now in its third edition and supplemented with more online material, this book aims to make the "new" information-based (rather than gene-based) bioinformatics intelligible both to the "bio" people and the "info" people. Books on bioinformatics have traditionally served gene-hunters, and biologists who wish to construct family trees showing tidy lines of descent. While dealing extensively with …
The “omics” era has given a new perspective to the findings on the origin and evolution of the process of translation. This book provides insight into the evolution of the translation process and machinery from a modern perspective. Written by leading experts in molecular biology, this text looks into the origins and evolution of the protein synthetic machinery.
The present work offers a snapshot of the state-of-the-art of crystallographic, analytical, and computational methods used in modern drug design and development. Topics discussed include: drug design against complex systems (membrane proteins, cell surface receptors, epigenetic targets, and ribosomes); modulation of protein-protein interactions; the impact of small molecule structures in drug d…
The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this new second edition book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental princ…
This volume serves as a proteomics reference manual, describing experimental design and execution. The book also shows a large number of examples as to what can be achieved using proteomics techniques. As a relatively young area of scientific research, the breadth and depth of the current state of the art in proteomics might not be obvious to all potential users. There are various books and rev…
This book covers both the technological development and biomedical applications of NADH fluorescence. Topics covered include perspectives on the history of monitoring NADH fluorescence, the relationship between mitochondrial function and other functions at the tissue level, responses of NADH to physiological and pathophysiological conditions, monitoring of NADH in the human brain and other orga…
The aim of the book is to discuss the application of molecular pathology in cancer research, and its contribution in the classification of different tumors and identification of potential molecular targets, as well as how this knowledge may be translated into clinical practice, and the huge impact this field is likely to have in the next 5 to 10 years.
While systems biology and pharmacodynamics have evolved in parallel, there are significant interrelationships that can enhance drug discovery and enable optimized therapy for each patient. Systems pharmacology is the relatively new discipline that is the interface between these two methods. This book is the first to cover the expertise from systems biology and pharmacodynamics researchers, desc…
This textbook offers clear explanations of optical spectroscopic phenomena and shows how spectroscopic techniques are used in modern molecular and cellular biophysics and biochemistry. The topics covered include electronic and vibrational absorption, fluorescence, resonance energy transfer, exciton interactions, circular dichroism, coherence and dephasing, ultrafast pump-probe and photon-echo s…