This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to…
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and …
This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory.…
These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking spe…
This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction mod…
In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics such as representation theory, algebraic geometry, quantum field theory, and string theory. One of the challenges of modern mathematical physics is to understand rigorously the idea of quantization. The program of quantization by branes, which com…
Setiap pengukuran dan pencarian fisika baru yang dilakukan di Large Hadron Collider dipengaruhi oleh aspek Kromodinamik Kuantum (QCD) dalam beberapa hal. Ketidakpastian yang terkait dengan pemodelan emisi quark dan gluon bisa sangat besar, dan oleh karena itu penting untuk melakukan pengukuran presisi di berbagai kondisi akhir yang sensitif terhadap emisi tersebut. Pengukuran tersebut membantu …
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chri…
An intellectual and cultural history of the birth of theoretical physics in Germany, focusing on the pedagogy and research of a leader in work on the "older" quantum theory. Arnold Sommerfeld (1868-1951) was among the most significant contributors to the birth of modern theoretical physics. At the University of Munich, beginning in 1906, he trained two generations of theoretical physicists. Eig…
This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves. It is a book for readers who, having already encountered quantum algor…