This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and too…
This book covers seismic probabilistic risk assessment (S-PRA) and related studies which have become more important to increase the safety of nuclear facilities against earthquakes and tsunamis in the face of the many uncertainties after the Fukushima accident. The topics are (1) Active faults and active tectonics important for seismic hazard assessment of nuclear facilities,(2) Seismic source …
This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lectu…
This open access proceedings volume brings selected, peer-reviewed contributions presented at the Third Stochastic Transport in Upper Ocean Dynamics (STUOD) 2022 Workshop, held virtually and in person at the Imperial College London, UK, September 26–29, 2022. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Comp…
"Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. S…
"The MIT Press.""This monograph addresses the problem of "real-time" curve fitting in the presence of noise, from the computational and statistical viewpoints. It examines the problem of nonlinear regression, where observations are made on a time series whose mean-value function is known except for a vector parameter. In contrast to the traditional formulation, data are imagined to arrive in te…
This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modelling. Comprising of about half-a-dozen major classes of statistical models, and fortified with necessary infrastructure to make the models more fully operable, the framework allows analyses based on many semi-traditional applied statistics models to be …
This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, vari…
First-passage properties underlie a wide range of stochastic processes, such as diffusion-limited growth, neuron firing and the triggering of stock options. This book provides a unified presentation of first-passage processes, which highlights its interrelations with electrostatics and the resulting powerful consequences. The author begins with a presentation of fundamental theory including the…
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automa…