This book gives a self-contained introduction to the subject of asymptotic approximation for multivariate integrals for both mathematicians and applied scientists. A collection of results of the Laplace methods is given. Such methods are useful for example in reliability, statistics, theoretical physics and information theory. An important special case is the approximation of multidimensional n…
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of th…
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the applica…
Paul M. Geffert analyses the interplay of noise and time delay in non-excitable nonlinear systems and the modulation of stochastic effects. In particular, the author studies coherence resonance, which is a constructive effect of noise that occurs in nonlinear systems, and demonstrates that it can be modulated by time-delayed feedback. Analytical methods for the investigation of stochastic delay…