
The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different se…

The generalized Schur algorithm (GSA) allows computing well-known matrix decompositions, such as QR and LU factorizations [1]. In particular, if the involved matrix is structured, i.e., Toeplitz, block-Toeplitz or Sylvester, the GSA computes the R factor of the QR factorization with complexity of one order of magnitude less than that of the classical QR algorithm [2], since it relies only on t…