In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics such as representation theory, algebraic geometry, quantum field theory, and string theory. One of the challenges of modern mathematical physics is to understand rigorously the idea of quantization. The program of quantization by branes, which com…
Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in analysis, algebraic geometry, number theory and topology is emphasized through many theorems. Al…
This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric g…
This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1. It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while also advancing some new ideas. The relevant constructions related to multiprojective spaces are r…
This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical points is still not completely understood, in dimension 2 or higher, due to the richness of the ge…
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of cu…
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le S…
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept t…
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7-11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geo…
The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging from statistical physics, geometry, particle physics, telecommunications, biology ... etc. This problem has been studied by many communities of researchers, mos…